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Understanding the processes underlying normal, impaired, and
recovered language performance has been a long-standing goal
for cognitive and clinical neuroscience. Many verbally described
hypotheses about language lateralization and recovery have been
generated. However, they have not been considered within a sin-
gle, unified, and implemented computational framework, and the
literatures on healthy participants and patients are largely sepa-
rated. These investigations also span different types of data, in-
cluding behavioral results and functional MRI brain activations,
which augment the challenge for any unified theory. Conse-
quently, many key issues, apparent contradictions, and puzzles
remain to be solved. We developed a neurocomputational, bilateral
pathway model of spoken language production, designed to provide
a unified framework to simulate different types of data from healthy
participants and aphasic patients. The model encapsulates key com-
putational principles (differential computational capacity, emergent
division of labor across pathways, experience-dependent plasticity-
related recovery) and provides an explanation for the bilateral yet
asymmetric lateralization of language in healthy participants, chronic
aphasia after left rather than right hemisphere lesions, and the basis
of partial recovery in patients. The model provides a formal basis for
understanding the relationship between behavioral performance
and brain activation. The unified model is consistent with the degen-
eracy and variable neurodisplacement theories of language recovery,
and adds computational insights to these hypotheses regarding the
neural machinery underlying language processing and plasticity-
related recovery following damage.

stroke aphasia | language lateralization | language recovery | bilateral
language processing | neurocomputational modeling

Language is a key human ability, and, when impaired (e.g., after
stroke or neurodegeneration), patients are left with significant

disability. Aphasia (acquired language impairments that follow
from brain injury, affecting comprehension, production, reading,
and writing) is common (1). Studies of healthy and impaired
language have a long history, and these vibrant literatures have
generated many verbally described hypotheses. The long-standing
literature on aphasia dates back to seminal 19th century studies
(2–4). While these verbally described hypotheses advanced our
understanding of language processing both theoretically and
clinically, it is not clear how they work mechanistically, and they
can be mutually incompatible. For instance, some notions propose
good aphasia recovery only results from language returning to the
left hemisphere (5–9), while others report that recovered language
performance is positively correlated with activation in the right
hemisphere (10–12). As a recent review (13) noted, the current
situation is confusing because there are many individual findings
and different types of data (e.g., patients’ language performance
vs. functional MRI [fMRI] activations), yet no unified mechanistic
account. There is a pressing need to have an implemented neu-
rocomputational model which can provide 1) a unified framework
in which findings from healthy participants and aphasic patients
can be accounted for, 2) a computationally instantiated framework

to formalize and test verbally described hypotheses, and 3) a
framework that can bridge between different types of cognitive
neuroscience data including language behavior, lesion locations,
and task-related fMRI. This was the overarching aim of the cur-
rent study. The puzzles and targets are set out briefly below.

Lateralization Assumptions
The first issue concerns lateralization in healthy and impaired
language. The very strongly held view that language is a left
hemisphere function primarily arises from the long-standing neu-
ropsychology literature showing that chronic aphasia is associated
with left hemisphere damage but not with right hemisphere dam-
age (14–16). However, the patient data are more graded than often
portrayed. Recent evidence has shown that right hemisphere le-
sions can generate language problems, especially in the early phase,
and some mild remaining deficits can be measured in chronic cases
(17). Several patient studies of semantic cognition (18–20) also
show that bilateral damage is required, to show more substantial
deficits.
Additionally, functional neuroimaging in healthy participants

shows that many language tasks such as repetition, picture naming,
comprehension, and production might be bilaterally supported
(21–26). Although the activation patterns are often leftward
asymmetric, the degree of asymmetry largely depends on the nature
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of the tasks, with a subset showing stronger forms of asymmetric
bias. For instance, propositional speech production is more left
lateralized, whereas nonpropositional speech (e.g., counting) gen-
erates bilateral activations (27–29). Of course, identifying activa-
tions associated with language does not necessarily imply that the
regions are necessary for language functions (30). Thus, it is im-
portant to note that a number of transcranial magnetic stimulation
(TMS) studies of semantics (31–34) and phonology (35) also indi-
cate that left and right areas contribute to healthy language.
Thus, when considering both chronic aphasic patients and

healthy participants, it appears difficult to reconcile the seem-
ingly contradictory findings: How can the language network be
strongly left lateralized in patients but be bilateral, albeit asym-
metric, in healthy participants? We propose that these results
could reflect the outcome of an intrinsically bilateral yet asym-
metric language network. Indeed, it has been demonstrated that
functional asymmetry could follow from hemispheric asymmetry
in the healthy language system (36–42) and that, when the system
is damaged (e.g., in patients with low-grade glioma), the degree
of asymmetry can change through functional plasticity (43, 44).
For instance, using a combination of fMRI and diffusion tensor
imaging, Vernooij et al. (42) demonstrated a significant corre-
lation between functional hemispheric lateralization and the
relative asymmetry of the arcuate fasciculus in healthy partici-
pants (see also ref. 41). Thus, within the language network, the
majority of healthy participants show leftward asymmetry of
brain volumes and arcuate fasciculus (36, 40, 45), suggesting that
more of the computational capacity is in the left than the right
hemisphere. Such capacity imbalance might generate bilateral
yet asymmetric lateralization in fMRI activation and also greater
likelihood of chronic impairment after left than right damage.
The latter may reflect a combination of the premorbid division of
labor for left over right in healthy language, and the potential for
plasticity-related recovery. This was explored in past computa-
tional work by reexposing the damaged model to its learning
environment, generating plasticity-related recovery via “retuning”
of the remaining computational capacity (46, 47). A straightfor-
ward hypothesis, from these earlier models, is that the potential
for such recovery reflects the amount of computational capacity
available. Thus, if the right hemisphere has insufficient capacity to
learn all language functions by itself (SI Appendix, Supplementary
Simulations), then, when the dominant left hemisphere is entirely
damaged, language functions cannot be fully reestablished by the
right hemisphere alone—resulting in chronic aphasia. In contrast,
if the weaker right hemisphere is lesioned, then the dominant left
hemisphere may have sufficient spare capacity to assimilate the
extra work.

The Computational Bases of Language Recovery
A recent review (13) considered two mechanisms: degeneracy
and variable neurodisplacement. Although not mutually exclu-
sive, degeneracy (30) suggests that cognitive functions might arise
from multiple, structurally distinct neural networks resulting in a
partially resilient system. Following damage, recovery of function
could be achieved by up-regulation of quiescent regions, alterna-
tive pathways, or nonlanguage regions that are not typically en-
gaged in the healthy state (for a computationally implemented
example, see ref. 46). The second mechanism is variable neuro-
displacement, a concept borrowed from automotive engineering
(variable displacement; https://en.wikipedia.org/wiki/Variable_
displacement). Given that the brain is metabolically expensive,
it seems very likely that energy consumption needs to be bal-
anced against performance demand. This can be achieved in
engines by “displacing” (down-regulating or turning off) a subset
of cylinders when full power is not required. Returning to the
brain, it is well established that higher neural activity is coupled
with increased metabolic energy costs (compare to neurovascular
coupling). If we assume that a cognitive function is supported by a

dynamic distributed network, then, when performance demand is
not maximal, parts of this network could be “displaced” (down-
regulated) to save energy (31, 48). This displaced “spare capacity”
is used when performance demand is high, but it could also be
permanently up-regulated, after partial damage to the network, to
support recovered performance (returning to the engine analogy,
if one cylinder’s function was compromised, then the other cylinders’
output could be up-regulated to compensate).
Previous computational studies (46, 47) of plasticity-related

recovery have provided some support for these principles, and
highlighted two types of experience-dependent learning, each
depending on remaining capacity in the model. In single pathway
models, relearning can retune and activate the “perilesional”
units and weights. Secondly, if there are multiple routes that
support the task, relearning can also shift the division of labor
between different pathways. The potential for recovery-related
changes is determined by the capacity available in different path-
ways and their engagement in the task prior to damage. Both
mechanistic hypotheses about language recovery need to be spec-
ified in more detail within an implemented computational model
that can simulate healthy and impaired language, as well as gen-
erate the different measures used to assess recovery of function,
such as language performance and fMRI activations.

Theories of Aphasia Recovery
In the long-standing literature on language recovery, most hy-
potheses are verbally described or are verbal descriptions of
observed phenomena (13). For example, up-regulated activation
in perilesional and contralesional areas has been associated with
recovered performance in poststroke aphasia (5, 49–54). Van
Oers et al. (53), for instance, showed that recovery of picture
naming was associated with activation in the remaining portion
of the left inferior frontal gyrus (IFG)- while recovery on more-
demanding tasks was associated with up-regulated contralesional
activation in the right IFG in addition to the left IFG. There is
also parallel evidence from combined TMS−fMRI studies in
healthy participants that inhibition of left hemisphere regions
up-regulates activation in the right homologous regions (31, 32).
Another notion is the right hemisphere hypothesis (RHH).

Several neuroimaging studies have demonstrated that patients
with left hemisphere damage recruit the right hemisphere during
language tasks (8, 50, 55). These findings have been interpreted
in terms of a right hemisphere juvenile language system, which
can provide some function after significant left hemisphere
damage but it is generally weaker and error prone. Despite being
a commonly repeated hypothesis for over a century, the com-
putational mechanisms involved in the development of language
and the shifts of function after damage remain unspecified and
computationally unimplemented. More confusingly, the hypothe-
ses and data in relation to the RHH are contradictory. Some
notions suggest that aphasia recovery is supported by this right
hemisphere system: Language performance is correlated with ac-
tivation in the right hemisphere (10–12), and, when aphasic pa-
tients have a second right hemisphere stroke, their language
performance declines (2, 56). In contrast, the “regional hierarchy
framework” proposes that right hemisphere activation is malad-
aptive, resulting from a release of transcallosal inhibition, and
good recovery only results from language returning to the left
(5–9). In a seminal study of very mildly aphasic patients with good
recovery (50), left hemisphere activation for auditory compre-
hension greatly decreased a few days after stroke and was followed
by increased bilateral activation with a significantly up-regulated
peak in the right hemisphere two weeks after stoke, and then the
peak activation shifted back to the left hemisphere in the chronic
phase. However, it remains unclear what mechanisms underlie the
changes in brain activity and what the longitudinal patterns are for
moderate and severe aphasia.
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These contradictory RHHs have inspired neurostimulation
interventions with opposite aims: either promoting right hemi-
sphere engagement (57) or trying to suppress it in favor of left
hemisphere involvement (58–61). Without a better understand-
ing of underlying mechanisms and a formal implemented model,
various foundational issues remain. These include how a right
hemisphere system can develop if it is suppressed by the left
hemisphere; how the two systems might interact; and whether
the results of negative associations between right hemisphere
activation and language are simply a reflection of severity, as
mild aphasia is associated with small lesions which leaves more
of the left hemisphere intact and able to be activated. Our
working assumption is that there is an intrinsically bilateral, al-
beit asymmetrically provisioned single functional network. That
is, the left and right hemispheres both contribute to speech
production, with differential contributions arising from the ef-
fects of imbalanced capacity across the hemispheres. An imple-
mented model would permit a proper investigation of how this
division of labor might shift and under what conditions, after
brain damage.
Additionally, the hypothesis of the maladaptive right hemi-

sphere activation supposes that the two hemispheres attempt to
inhibit each other through transcallosal inhibition (6, 7, 9). There
are several puzzles about this hypothesis, including 1) why the
healthy brain might spend most of its lifetime preventing regions
from working (a biologically expensive implementation) and 2)
how the less dominant system can develop even semiuseful rep-
resentations if being persistently suppressed. We also note that, to
the best of our knowledge, outside of the motor system (62–64),
there are no demonstrations of transcallosal inhibitory connec-
tivity. Conversely, there is even some evidence of excitatory con-
nectivity (65, 66). With an implemented bilateral language model,
we can explore the effect of transcallosal connectivity on model
behavior, task performance, and recovery.

Multiple Measures
The last issue concerns different types of data and measures.
Classically, explorations of brain function relied on relating brain
activations (8, 10–12, 52) or lesions (67–69) to patients’ perfor-
mance. Functional neuroimaging now allows the healthy and
damaged brain to be explored, in vivo. Thus we now have mul-
tiple measures to consider in parallel, including lesion location
and size, behavioral language performance, activations, and
connectivity. To make progress, the field needs to understand
the relationship between these measures. It is tempting to as-
sume that activated regions must be contributing to patients’
performance, but activation does not prove necessity (30). Fur-
thermore, different types of analyses, such as multivoxel pattern
analysis (MVPA) (70), have started to be used to explore and
predict recovered performance. For instance, Fischer-Baum
et al. (71) reported that, in a stroke patient with a severe
reading impairment, the orthographic activation patterns in the
right fusiform gyrus were more similar to stimulus patterns than
in the left fusiform gyrus. Thus, it is critical that computational
models are designed to accommodate multiple measures within a
single framework, to allow formal explorations of the relationship
between brain activations and contributions to the observed
behavioral performance.
To summarize, the primary aim of this study is to address four

key issues by developing a unified, bilateral pathway model of
spoken language production: 1) language lateralization in healthy
participants and poststroke patients, 2) mechanistic accounts for
language recovery, 3) dynamic shifts of activation in poststroke
aphasia and recovery with/without transcallosal connectivity, and
4) the relationship between multiple measures and recovered
function. We directly compared the model to data derived from
four important, exemplar studies of healthy individuals and post-
stroke aphasia—Vernooij et al. (42), Gajardo-Vidal et al. (17),

Saur et al. (50) and Fischer-Baum et al. (71)—and used the model
to make predictions for future exploration. Given the maelstrom
of historical hypotheses, data, etc., we have provided a summary
guide to the critical issues, alternative viewpoints, our working
hypotheses, and simulated effects, in Table 1.

Results
Hemispheric Asymmetry and Language Lateralization. The bilateral
model was implemented as a simple recurrent network, con-
sisting of two parallel pathways trained to perform word repe-
tition (see Methods). We investigated whether the model could
simulate language lateralization that follows hemispheric asym-
metry, similar to the correlation pattern between functional hemi-
spheric asymmetry in parietotemporal regions and structural
asymmetry in arcuate fasciculus during the spoken production task
reported in Vernooij et al. (42). Specifically, we varied the pro-
portion of hidden units in the left versus the right pathways in the
model (Fig. 1A) to simulate the relative capacity of the two path-
ways (72) while the total number of hidden units remained un-
changed. The number of units for the two consecutive hidden layers
in each pathway was the same. After training, the model was also
tested on nonword repetition (an assessment of generalization to
novel phonological forms).
In imaging studies, a laterality index is commonly estimated

using blood oxygenation level dependent (BOLD) or cerebral
blood flow in the left and right homolog language areas (42, 73).
In our model, two different measures were used to compute the
degree of lateralization: functional contribution and output unit
activation. Functional contribution measured the relative con-
tribution from the left or right pathway to output activation, as a
proxy of effective connectivity analyses (47, 74). Output unit
activation measured average unit activation at the output layer
from either the left or right pathway, as a proxy of fMRI acti-
vation (75). A positive laterality score indicated that the model
showed a left-lateralized pattern; conversely, a negative score
indicated a right-lateralized pattern. An asymmetry index for
computational capacity (number of left vs. right hidden units)
was calculated in the same way as the laterality index. We also
investigated average hidden unit activation in the left and right
pathways across different conditions, during development and
in recovery.
Results are summarized in Fig. 1. All models performed well

on word repetition and generalized to nonwords (Fig. 1B). There
was a clear lexicality effect, with the highest accuracy for high-
frequency (HF) words, followed by low-frequency (LF) words
and then nonwords (NW). Importantly, the performance level
achieved by the model with differential capacities in the left and
right was very similar because the total number of units was the
same. These observations were confirmed by a repeated
ANOVA. There was a significant word type effect (HF vs. LF
vs. NW: F(2, 278) = 33.8, P < 0.001), while both model type (P =
0.44) and its interaction with word type (P = 0.18) were not
significant. This means that the model was able to exploit the
computational capacity flexibly to learn the task and to gener-
alize. In contrast, the underlying processing changed. Fig. 1C
shows that more hidden units along a pathway resulted in higher
average hidden unit activation. Thus, the emergent functional
division of labor in the model was not solely based on there being
more units in the “dominant” processing pathway, but they also
resultantly worked harder, on average. Critically, Fig. 1D shows
that the model with more processing units in the left pathway
(i.e., a larger asymmetry index) produced a more left-lateralized
pattern. Laterality indices based on functional contribution and
output unit activation were both positively correlated with
asymmetry index for model capacity, Pearson’s r = 0.929, P <
0.001, and Pearson’s r = 0.917, P < 0.001, respectively. The re-
sults are consistent with the function−structure pattern reported
in Vernooij et al. (42).
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Chronic Aphasia after Left but Not Right Hemisphere Stroke.We next
investigated whether damage to the left hidden layer in the
model would be more likely to result in permanently impaired
language performance (chronic aphasia) compared to damage to
the right. Gajardo-Vidal et al. (17) found that approximately half
of patients, 49% (151/307), with left hemisphere stroke showed
impaired repetition performance, whereas the incidence for pa-
tients with right hemisphere stroke was about 5% (5/93). In the
preceding section, we demonstrated that the model with more
computational capacity in the left pathway produced a bilateral,
left-asymmetric activation pattern similar to fMRI brain activa-
tions observed in most healthy individuals during language pro-
duction. Thus, we opted to use a model with an asymmetrical
structure where the computational capacity in the left was twice
as large as that in the right (60 vs. 30 units). The 30 units in a
hidden layer also met the minimum number of units required
for a unilateral model to support the production task (SI
Appendix, Fig. S1).
Fig. 2A shows both the developmental learning trajectory be-

fore lesioning (the intact model) and an example recovery profile
of the model with a left or right moderate lesion. During de-
velopment, the model learned HF words more accurately and
quickly than LF words. Generalization to NW was very good,
although lower than performance on words. Then, a moderate
lesion was applied to the left hidden (LH) or right hidden (RH)
layer 1 in the model. A moderate lesion, 50% (0.5), meant that
50% of the units were damaged, and noise with the variance of
0.5 was added to the links connecting to and from the left hidden
layer 1. After damage, the model was reexposed to its learning
environment for 100,000 word presentations to allow for a period
of experience-dependent, plasticity-related recovery (based on a
reoptimization of the remaining processing units) (47). To mimic

the loss of function and missing activation in the damaged brain
regions immediately after stroke (50), a period of initial ineffi-
cient learning for the surviving units was implemented (i.e., their
learning abilities were initially limited and then gradually
regained, whereas, for the units in the unaffected layers, learning
efficiency was normal). Inefficient learning was implemented by
varying unit gain from zero to one in steps of 0.1 over the early
stage of retraining (the first 10,000 word presentations in the
recovery phase). Note that the model behaved similarly without
the implementation of a period of inefficient learning (SI Ap-
pendix, Supplementary Simulations). Immediately after left dam-
age, the performance of the model was at floor. Then, the model
started to reoptimize the weight connections and relearned the
task. In the later stage of recovery, performance gradually in-
creased up to an asymptote (i.e., partial function recovery as
found in chronic aphasia). In contrast, the right damage only
caused minor disruptions to the performance, and it recovered
rapidly (i.e., full function recovery akin to transient aphasia).
Obviously, patients have different lesion severities in the left

or right hemisphere, leading to different recovery profiles. To
capture this, different levels of damage were applied to the left
or right hidden layer 1. Specifically, 10 lesion levels were imple-
mented by damaging hidden units from 10 to 100% with step in-
crement of 10%, plus adding Gaussian noise, with variance from
0.1 to 1 with step increment of 0.1, to the links that were con-
nected to and from the target hidden layer. All retraining proce-
dures were the same as described above. Fig. 2B shows the final
recovered performance as a function of different levels of damage
to the LH1 or RH1. For left lesions, the recovered performance
varied with lesion levels. We divided the models into three lesion
groups, 10% (0.1) to 30% (0.3) for the mild group, 40% (0.4) to
60% (0.6) for the moderate group, and 70% (0.7) to 100% (1) for

Table 1. Overview of critical issues, key issues, alternative viewpoints, working hypotheses, and simulated effects/model explorations

Critical issues Key issues Alternative viewpoints Working hypotheses Simulated effects/explorations

Lateralization
assumptions

How can the language
network be strongly left
lateralized in patients but
be bilateral, albeit
asymmetric, in healthy
participants?

1) Impaired language function
after left but not right
hemisphere damage (14–16)

Leftward hemispheric
asymmetry generates
bilateral yet asymmetric
lateralization in simulated
BOLD and also greater
likelihood of chronic
impairment after left than
right damage

1) Functional asymmetry
followed computational
capacity2) A function-
structure pattern (42)3)
Impaired performance after
left but not right damage to
the model (17)

2) Bilateral and asymmetric
brain activations in healthy
individuals during language
tasks (21–29)

The computational
bases of language
recovery

A lack of an implemented
model for the
computational bases of
language recovery

1) Degeneracy (13, 30) The mechanisms are not
mutually exclusive and they
can be utilized as a part of
the recovery process

Various analyses on model
behavior and explorations
of the underpinning
computations in both
damage and undamaged
conditions

2) Variable neurodisplacement
(13)

Theories of aphasia
recovery

1) What are the dynamic
activation shifts in
poststroke aphasia and
recovery?

1) Perilesional up-regulated
activation (5, 49–54)2) The
“regional hierarchy
framework” (5–9)

Patterns of recovery are
related to the differential
capacity available in left
and right hemisphere
systems and lesion severity

1) Dynamic patterns of
activation shifts during
recovery (50)2) Lesion severity
as a determiner for recovered
performance and brain
activation patterns3) Different
types of interconnectivity

2) What is the effect of
transcallosal connectivity
on healthy and impaired
function?

3) Right hemisphere activation
(2, 8, 10–12, 50, 55, 56)

Multiple measures What is the relationship
between multiple brain
measures and recovered
function in patients?

1) Behavioral measures
compared with fMRI
activation (8, 10–12, 52)

Different measures provide
different types of
information

1) Model accuracy better
tracked by the RSA than unit
activation (cf. BOLD)2) A
conceptually similar RSA
pattern to data in ref. 71

2) Potential applications of
multiple voxel pattern
analysis (71, 72) in the
patient studies
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the severe group. The mild group showed the best recovered
performance, while the severe group was the worst, with the
moderate group in the middle. For the right lesions, the model
generally recovered very well regardless of lesion levels. These
results demonstrated that, following damage and recovery, per-
formance of the left-lesioned model was much more impaired
than the right-lesioned model. The simulation data were generally
consistent with the patients’ studies reported in Gajardo-Vidal
et al. (17), showing a stroke in the left hemisphere is more likely
to lead to profound, chronic language impairment (Fig. 2B), albeit
the right lesion model may have underestimated the mild level of
aphasia that is sometimes observed (see Discussion).

Dynamic Activation Shifts in Poststroke Aphasia and Recovery. An
important aspect of this study was to investigate the relationship
between simulated behavioral performance and underlying met-
rics of unit function (to mimic functional neuroimaging data).
Three levels of left lesions (20% [0.2], 50% [0.5], and 80% [0.8])
were selected to simulate mild, moderate, and severe aphasia.
Additionally, the severe right lesion (80% [0.8]) was included to
understand what compensated the effects of right damage. Four
measures were used to reveal the mechanisms underlying recovery
in the damaged model. First, as before, the damaged model’s
accuracy on word and nonword repetition was used to simulate
poststroke aphasic patients’ behavioral performance. Second, we
used output unit activation in the left and right pathways as a
proxy of fMRI activation (75). Additionally, we investigated
whether the model could produce similar activation patterns to
that observed by Saur et al. (50) during three phases of language

recovery. Specifically, we investigated whether a mildly lesioned
model could produce 1) from the acute phase to the subacute
phase, an increase of the output unit activation in the undamaged
left pathway and the right pathway with the highest increase in the
right; and, 2) from the subacute phase to the chronic phase, a
decrease of the output unit activation in the right pathway but with
the output unit activation in the left remaining stable. Accordingly,
the relearning time in the model was divided into three recovery
periods (acute, subacute, and chronic) approximating different
stages of patient recovery, and the average output unit activations
were computed. Third, we measured the perilesional and contra-
lateral hidden unit activations to examine which undamaged units
in the model were reformulated to support during recovery.
Lastly, we conducted representation similarity analysis (RSA)
comparing the activation similarity patterns in the hidden layers to
the output similarity for the words. To our knowledge, there is
only one stroke patient study that has utilized RSA (71). This
study found that, when reading, a patient with a severe lesion to
the left visual word form area (VWFA) relied more on the right
VWFA for orthographic processing, indexed by the RSA similarity
scores, while the healthy participants generally relied more on the
left VWFA than the right. As this investigation was a single case
study of reading (not repetition), we report analogous data based
on the closet settings to Fischer-Baum et al. (71), and investigated
whether the reliance of the processing shifted from the left to right
after severe damage to the left in the model.
In addition to these four measures, two additional measures

were related to the model’s relearning: average weight strength
and weight change. Both measures were helpful for understanding

Fig. 1. The model architecture, repetition performance, average hidden unit activation, and lateralization patterns produced by the bilateral model with
differential capacity in the left and right pathways. (A) The model with five different numbers of hidden units in the left and right pathways including 15 and
75, 30 and 60, 45 and 45, 60 and 30, and 75 and 15. The number of units in hidden 1 layer and hidden 2 layer was the same. The dashed lines indicate Elman
connections (see Methods). (B) The repetition performance of the model on high-frequency words, low-frequency words, and nonwords. (C) Hidden unit
activation produced by the model across the hidden layers along the left and right pathways. (D) The lateralization patterns based on functional contribution
and output unit activation produced by the model and the behavioral data reproduced from Vernooij et al. (42). HF, high frequency; LF, low frequency; RFD,
relative fiber density. Error bar represents ±1 SE.
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how the model relearned the task during recovery and what the
links were between recovery performance and relearning pro-
cesses (see SI Appendix, Supplementary Simulations for details).
Fig. 3 summarizes several key phenomena. We can first look at

performance accuracy and output unit activation. For the left
lesion, the recovered performance of the model aligned with
lesion severity, with the mild lesion model showing the best per-
formance. Importantly, for the mildest lesion, there was a tran-
sient pattern of output unit activation shifting from left to right at
the early stage of recovery and then back to left at the later stage
of recovery, similar to the finding observed in the mild aphasic
patients (50). To test these observations, we compared the simu-
lation data against Saur et al. (50) by computing the differential
output unit activations between the acute and the subacute phases,
and between the subacute and the chronic phases. As can be seen
in Fig. 4A, the output unit activations significantly increased for
both the left and right pathways, t = 8.11, P < 0.001, and t = 8.56,
P < 0.001, respectively, from the acute to the subacute phase. The
increase of activation was numerically higher for the right than for
the left pathway. The comparison of the subacute and chronic
phases showed a significant decrease of activation in the right
pathway, t = −3.55, P = 0.002, but not in the left pathway (P =
0.14). All of the statistics were corrected for multiple comparisons.
As for the moderate and severe lesion, the models in Fig. 3

showed right lateralized activation patterns, and the recovered
performance was worse than that in the mild lesion. In contrast,
even after a severe right lesion, accuracy was only slightly dis-
rupted but quickly recovered, and the output activation pattern
during recovery largely remained unchanged, with a small rise in
right output unit activation.
We investigated how undamaged perilesional and contrale-

sional units supported recovery. The results showed that, for

both mild and moderate lesions, the LH1 perilesional activation
initially decreased following damage but then gradually in-
creased during relearning, reflecting a reoptimization process. A
similar but larger initial decrement followed by a slower incre-
ment pattern was observed for LH2 hidden unit activation. For a
severe lesion, both the LH1 and LH2 hidden unit activation
decreased following damage but did not rise again, presumably
because there were insufficient processing units available in the
LH1 layer for the model to reoptimize. This pattern was also
observed for the right severe lesion comparison, where both the
RH1 perilesional activation and RH2 hidden unit activation
gradually decreased and remained in a low activity level. Turning
to contralateral activation, for all severities of the left lesion, the
contralateral hidden unit activations at RH1 and RH2 increased
very quickly following damage. The degree of increment was
varied and depended on lesion severity, with the largest incre-
ment for the severe condition. By contrast, for the right severe
condition, there was no clear increment of the contralateral
hidden unit activations at LH1 and LH2.
For the correct interpretation of the relationship between

patient behavioral performance and underlying activation, it may
be important to note that there were differential associations
between model accuracy and the various unit metrics. Fig. 3
shows that the RSA measure closely shadowed the changing
model accuracy, quite unlike simple unit activation (a proxy to
BOLD levels) which show a complex nonlinear relationship.
Taking the left moderate lesion as an example, even when the
right output unit activation was building up quickly during the
initial recovery period, change in model performance was mini-
mal. Subsequently, long after the point when the right output
unit activation reached a relatively stable level, there was a much
larger and gradual increase in model accuracy. By contrast, the
change in the RSA pattern was closely aligned with model per-
formance. Interestingly, although the right output unit activation
was higher than the left output unit activation throughout re-
covery, the RSA results showed the left unit correlation was
initially lower than the right unit correlation but returned to a
higher level later in recovery.
To examine, formally, the relationships between model per-

formance with output unit activation and the RSA measure, we
conducted correlation analyses. Model performance was corre-
lated with output unit activation and the RSA scores at LH1,
RH1, LH2, and RH2 separately. Correlation analyses were
conducted across the developmental learning period in the intact
model and the relearning period in the lesioned model. Results
are summarized in Table 2. The correlations between output unit
activation and model performance were mostly negative, in par-
ticular, for the lesioned conditions, except for the positive corre-
lations for the left output unit activation in the intact condition
and for the right output unit activation in the left severe lesion
condition. When considering all intact and lesion conditions, the
pattern of change in correlation for output unit activation was
difficult to interpret. By contrast, the correlation with the RSA
scores was more interpretable. The pattern of correlation change
was moderated by lesion severity, revealing the sources of con-
tribution to model performance. For the left lesions, left RSA unit
correlations were much higher than the right RSA unit correla-
tions in the milder lesion conditions. With increasingly severe le-
sions, the right RSA unit correlations increased with the decrease
in the left RSA unit correlations. For the right severe condition,
the left RSA unit correlations remained higher than the right RSA
unit correlations. Fig. 4B shows that the intact model produced a
higher RSA unit correlation for the LH1 than the RH1, and the
opposite pattern was found for the left severe model. These results
were conceptually similar to the findings of Fischer-Baum et al.
(71), in which the healthy controls relied more on the left VWFA
for orthographic processing in contrast to the patient with severe
damage to left VWFA relying more on the right VWFA. Obviously,

Fig. 2. (A) The developmental learning trajectory of the model before
damage, and the recovery profile after damage (moderate lesion 50% [0.5])
to the left or right hidden layer 1, simulating a left or right hemisphere stroke
and recovery. Note that the unequally spaced time scales for the relearning
period were made to clearly demonstrate the model’s relearning in different
periods. (B) The recovered performance of the left-lesioned model and the right-
lesioned model as a function of lesion levels (a combination of unit damage and
noise; see the Chronic Aphasia after Left but Not Right Hemisphere Stroke sec-
tion for details). “Intact” means the model without lesion. The behavioral data
of unimpaired repetition performance were reproduced from Gajardo-Vidal
et al. (17). HF, high-frequency words; LF, low-frequency words; NW, nonwords;
LH, left hemisphere; RH, right hemisphere.
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the tasks in the present study and Fischer-Baum et al.’s study are
different. Thus, the patterns produced by the model can be con-
sidered as predictions for future patient studies in spoken produc-
tion. Collectively, these results demonstrated that the RSA could
potentially provide a more direct measure to relate model perfor-
mance to the underlying computations.

Interconnectivity Between the Left and Right Hemispheres. Thus far,
the implemented model did not have interconnections between
the left and right pathways. Cortical hemispheres, however, are
connected by the corpus callosum as well as various subcortical
routes (76). Given that the corpus callosum and interhemi-
spheric connectivity are complex, a detailed neuroanatomically
constrained simulation is beyond the scope of this study. However,
we explored a simplified simulation by adding direct “homotopic”
interconnections between the left and right pathways to investigate
1) whether this changed the patterns of simulated recovery
reported above, and 2) whether the model would develop trans-
callosal inhibitory connectivity as proposed in various classical
hypotheses (6, 7, 9). Transcallosal connectivity in the model was
implemented as sparse, bidirectional cross-connections between
the left and right hemispheres without imposed positive or nega-
tive connections (all weight connections were allowed to develop
freely). As there is no prior knowledge about interhemispheric
connectivity density, we implemented two connectivity levels (30%
and 70%). The training and testing procedures were exactly the
same as previously described. We also ran additional comparison
simulations in which the connections were constrained to be
negative only (SI Appendix, Supplementary Simulations). This
constrained model produced stronger left-lateralized patterns,
and it was less resilient to damage. Analyses of the weight values
demonstrated that the vast majority were close to zero; that is,

the model effectively became one with independently function-
ing pathways. This was not true when the connection values were
unconstrained.
Fig. 5 shows the resulting patterns produced by the left mild, left

moderate, and left severe and right severe lesioned models with
different levels of interconnection (unconstrained). For comparison,
the pattern produced by the model without interconnections is in-
cluded in Fig. 5. Overall, the patterns were similar. There was
transient right unit activation for the left mild lesion condition but
not for more-severe left lesion conditions. In addition, the model
could recover to a similar accuracy level regardless of the levels of
interconnection. But, when the model had more interconnections, it
showed a more bilateral pattern following damage and recovery,
increasingly behaving like a single functional pathway model. This
observation was confirmed by the results from the right severe lesion
condition, where the model with more interconnections exhibited a
more pronounced impairment in the early recovery phase.

Discussion
Understanding the brain mechanisms underlying language pro-
cessing is critical, both theoretically and clinically. To tackle
various key issues that appear to be contradictory in healthy and
impaired language processing (Table 1), we developed a single,
unified neurocomputational model of spoken language production
with bilateral pathways. The key features of this modeling work
include the importance of considering healthy and impaired lan-
guage within an intrinsically bilateral but asymmetric language
network; to conceptualize recovery of function after damage as an
experience-dependent plasticity-related learning process; and to
provide a platform to simulate behavioral and neuroimaging data
from different populations. A list of the key findings is provided in
Table 1, and each are discussed briefly below.

Fig. 3. Simulation patterns of poststroke aphasia and recovery: left mild (20% [0.2]), left moderate (50% [0.5]), left severe (80% [0.8]), and right severe (80%
[0.8]) conditions. The lesion level was a combination of the proportion (percent) of the units that was damaged and the range of noise (bracket) added to the
connections to and from the hidden layer. For each lesion condition, the first panel shows model performance, the second panel shows output unit activation
generated from the left and right pathway of the model separately, and the third panel shows hidden unit activation for the left and right hidden layers 1
and 2. The activations for lesioned and perilesional units are plotted separately; the fourth panel shows the RSA scores obtained in the left or right hidden
layers 1 and 2 in the model. HF, high-frequency words; LF, low-frequency words; NW, nonwords; L, left; R, right; LH, left hidden layer; RH, right hidden layer.
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In an otherwise computationally homogenous model, an initial
imbalance in the processing capacity (number of hidden units) in
the left and right hemisphere pathways was sufficient to explain
the pattern of data observed in healthy participants and patients
with chronic aphasia. Specifically, the capacity imbalance drives
an emergent division of labor across the pathways such that the
left hemisphere pathway picks up more of the computational
work (i.e., each unit, on average, is more highly activated and
contributes more to the final spoken output response than each
corresponding right hemisphere unit). As a result, the undamaged
model shows bilateral but asymmetric “activation” as observed in
healthy participants. When this capacity imbalance is combined
with plasticity-related recovery, the model provides an explanation
for why left hemisphere stroke is more likely to result in chronic
aphasia than right hemisphere stroke. Plasticity-related recovery
reflects a reoptimization of the remaining connection weights to
maximize behavioral performance. This occurs in both “perile-
sional” units and the contralateral pathway. The greater compu-
tational capacity in the left hemisphere means that, when the right
hemisphere is damaged, there is greater capacity for the left
hemisphere pathway to pick up the extra representational work
previously undertaken by the (damaged) right hemisphere path-
way (meaning that there is only transient aphasia). The same re-
covery process occurs following left hemisphere damage, except
that 1) the greater left hemisphere capacity means that, at least for
mild levels of damage, there is still enough spare capacity in the
remaining ipsilateral units to pick up the additional computational
work (i.e., there is good or recovered function, and left hemi-
sphere activation still dominates, even after mild levels of left
hemisphere damage) and 2) there is insufficient capacity in the
right hemisphere to compensate completely if the left hemisphere
damage is too severe. In such circumstances, the model mimics

chronic aphasia. In all cases, plasticity-related recovery means that
there is a dynamic shift in the division of labor to ipsilateral
“perilesional” and contralateral areas, as is observed in fMRI
studies of recovered patients. The model also demonstrates that
there can be complex, nonlinear relationships between behavioral
performance and levels of unit activation (a proxy for BOLD),
whereas the relationship is much more direct when comparing
performance to the accuracy of the representations coded in the
pathway (implying that MVPA-type neuroimaging analyses may
be a better way to assess and track the neural bases of recovery in
aphasic patients).
Leftward hemispheric asymmetry has been shown in several

brain regions and white matter tracts (36–40). However, there
remains some controversy regarding a positive correlation be-
tween structural asymmetry and functional lateralization (25, 41,
42, 77). The discrepancy could be related to individual differ-
ences among participants (e.g., age, education, handedness, and
gender), or it could be because most studies have relatively small
sample sizes (78). In a more controlled computational environ-
ment, our bilateral model with differential pathway revealed the
impact of model capacity on the functional division of labor
underlying performance and demonstrated a link between hemi-
spheric asymmetry and language lateralization. The simulation
results are consistent with the positive correlation patterns
reported in most right-handed healthy participants (41, 42). The
model also shows that this structural difference could be funda-
mentally important for explaining patient data. By explicitly in-
corporating a leftward asymmetric but bilateral structure in the
model, the model synthesizes the seemingly contradictory patterns
observed in both healthy participants and aphasic patients (Fig. 2):
specifically, a leftward asymmetric but bilateral pattern in the in-
tact model, and the much stronger lateralization picture that is
observed in chronic patients after left (aphasic) vs. right (recov-
ered) lesions. Additionally, the relationship between the severity
of the left lesion and recovered performance is nonlinear (Fig.
2B), suggesting that the model had developed some resilience to
mild damage (up to ∼35%) but, beyond a “tipping point,” the
effects of damage cannot be overcome through plasticity-related
relearning, leading to more permanent language impairment as
observed in chronic aphasia. It is important to note that there was
a small divergence between the simulation results and Gajardo-
Vidal et al.’s (17) patient data; that is, the model is more robust to
right hemisphere damage (Fig. 2B). It is possible that this high-
lighted version of the model might possess a division of labor too
biased to the left hemisphere pathway, making the contribution of
the right hemisphere a little too weak. From our explorations
of the key computational parameters, we know that the division of
labor is governed in part by 1) the asymmetry in the balance of
computational resources (Fig. 1) and 2) the degree of inter-
connectivity between the left and right pathways (Fig. 5).
Taking a step back, this explanatory framework for aphasia

and recovery raises some fascinating fundamental questions
about higher cognition more generally: 1) Why is it good for
cognitive functions to be supported bilaterally, and, 2) if so, why
is it beneficial for some functions to remain at least partially
dominated by one hemisphere (compare to the asymmetric yet
bilateral architecture of the language production system)? Com-
plete answers to these questions will have to wait for future re-
search, but there are some initial ideas in the literature. With
regards to the benefits of bilateral implementation, a recent
computational model and formal mathematical analysis demon-
strated that bilateral systems are much more robust to the effects
of damage than is a singular system with the same resources (79).
The second question is more difficult to answer. One possibility is
that a bilateral system’s resources might be pulled asymmetrically
if that cognitive function has to interact with other computations/
representations that, themselves, are unilaterally expressed (al-
though, of course, this begs the same question of why these are

Fig. 4. (A) The increment and decrement of the activations in the model
with a left mild lesion. Direct comparisons of output unit activations be-
tween the acute (300 K to 301 K) and subacute (301 K to 305 K) phases and
between the subacute and chronic (305 K to 340 K) phases with the fMRI
data of up-regulation and down-regulation in the language network reported
by Saur et al. (50). Ex1, acute; Ex2, subacute; Ex3, chronic. (B) RSA similarity in-
dices of the left hidden layer 1 for both the intact model and the model with a
severe left lesion. The orth-visual similarity indices for both the controls and the
patient in the left VWFA and the right VWFA are from Fischer-Baum et al. (71).
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asymmetrically supported). A second possibility comes from a
potential downside of distributing the same function across mul-
tiple brain regions. While the distributed system may engender

greater robustness to the effects of damage, it might induce a need
for heightened synchronization. Previous proposals (80) noted
that human connected speech is highly demanding in terms of the
rapid, accurate motor executions required, as well as the fast
conceptual-to-speech transformations (81). When output signals
need to change rapidly and accurately, then, in the situation of
bilateral systems, the need for synchronization also increases (80).
In the limit, sufficient synchronization across distributed brain
regions may be impossible to achieve, and thus the “compromise”
is to let one side of the computation dominate; that is an asym-
metric, bilateral system.
Two potential mechanistic frameworks have been proposed

for language recovery: degeneracy and variable neurodisplace-
ment (13). Both mechanisms allow the language system to be at
least partially resilient to damage and for recovery of function.
Recovery can be accomplished by a permanent reformulation of
the remaining multiple codes (degeneracy) or up-regulation of
systems (variable neurodisplacement), or both. The present
neurocomputational model demonstrates that both mechanisms

Table 2. The correlations between model performance and
output unit activations and RSA scores across the developmental
learning period in the intact model and the relearning period in
the lesioned models

Intact L mild L moderate L severe R severe

L output unit act 0.23*** −0.29*** −0.20*** −0.1* −0.23***
R output unit act −0.48*** −0.37*** −0.04 0.09* −0.06
L RSA H2 0.84*** 0.92*** 0.82*** 0.33*** 0.42***
R RSA H2 −0.08 −0.04 0.40*** 0.69*** −0.08
L RSA H1 0.82*** 0.92*** 0.81*** 0.29*** 0.44***
R RSA H1 −0.04 −0.05 0.28*** 0.64*** −0.08

P < 0.05; ***P < 0.001; L, left; R, right; act, activation.

Fig. 5. Simulation patterns of poststroke aphasia and recovery produced by the model with three levels of interconnections (0%, 30%, and 70%) between
left and right sides for the left mild (20% [0.2]), left moderate (50% [0.5]), left severe (80% [0.8]), and right severe (80% [0.8]) lesion conditions. The lesion
level was a combination of the proportion (percent) of the units that was damaged and the range of noise (bracket) added to the connections to and from the
hidden layer. For each lesion and interconnection conditions, Top shows model performance and Bottom shows output unit activation generated from the
left and right pathway of the model separately. HF, high-frequency words; LF, low-frequency words; NW, nonwords; L, left; R: right.
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are not mutually exclusive, and they can be utilized as a part of
the recovery process. Immediately after dominant pathway dam-
age, the model rapidly activates contralesional activation and also
starts to reformulate the perilesional unit contributions. If the
perilesional units are capable of resupporting the function, then,
later in recovery, both perilesional and contralateral contributions
increase; otherwise, the perilesional contribution is decreased, and
the enhanced contralateral contribution continues. As such, it
would appear that the recovery process follows the two proposed
principles, but the actual mechanisms involved depend on the
level of task engagement by the units before damage and whether
there is sufficient capacity in the remaining perilesional or con-
tralateral areas to support recovery. As a result, there are differ-
ential output activation recovery profiles depending solely on
lesion severity. With a mild left lesion, the perilesional units are
largely persevered and can be reformulated for recovery, leading
to good recovery and left-lateralized output activation patterns.
With a more severe left lesion to the model, perilesional support is
reduced, and partial recovery relies mainly on the contralateral
units. Accordingly, there is a cooccurrence of slow and imperfect
recovered performance with right-lateralized activation patterns.
These simulations collectively mirror the patient results reported
in the literature: Good performance is associated with left-
lateralized activations, while worse performance is associated
with more right-lateralized activations (5), and left−right−left
changing brain activation patterns are observed in patients with
mild brain lesions in the left hemisphere (50). This finding em-
phasizes the importance of considering lesion severity when inter-
preting associations between good recovery and left-lateralized
brain activation patterns (5, 50) and the association between im-
perfect recovery and right-lateralized brain activation patterns (82).
The present bilateral model also provides a potential expla-

nation for why the right hemisphere provides some but not perfect
language support. The classical RHH proposes that the right
hemisphere is normally suppressed, via transcallosal inhibition, by
the dominant left hemisphere system, but it can be released to
provide some function after significant left hemisphere damage (6,
7, 9). As noted previously (2, 5, 8, 10–13, 27, 50, 56), the RHH
leaves many puzzling questions open, including how the right
hemisphere can develop language representations under lifelong
suppression, how left and right language systems might contribute
to normal function, what bilateral yet asymmetric BOLD activa-
tion in healthy participants represents, and why this biologically
expensive organization for all people is an optimal solution for the
minority of people who happen to suffer from the right kind of
brain damage to induce aphasia. The current simulations provide
a much more straightforward proposal for the data. The pre-
morbidly bilateral albeit asymmetric system supports healthy
function but can partially reoptimize following damage. This can
all be achieved without any recourse to notions of juvenile right
hemisphere language systems and interhemispheric inhibition.
Instead, the right hemisphere subsystem is less efficient because it
has less computational capacity, and, in turn, learning in the left
hemisphere overshadows that in the right, resulting in the left
hemisphere units taking up more of the representational work
(Fig. 1C). These results follow even without interhemispheric
connection. Even if included (Fig. 5), then 1) they do not all
become inhibitory and, 2) with increasing connectivity, the
model evolves into a single functional system. Of course, it
should be acknowledged that the connections within corpus cal-
losum are much more complex than the simple parallel connec-
tions implemented in the present model. While interhemispheric
connectivity has been shown to be inhibitory within the motor
network (62–64), to our knowledge, there is currently no evidence
of transcallosal inhibitory in language or other higher cognitive
networks; in contrast, a few studies have demonstrated inter-
hemispheric excitatory connectivity (65, 66). Finally, in a third

variant in which inhibitory-only interhemispheric connections
were enforced, the model set their value close to zero.
We should note that one previous study (9) applied TMS to

left IFG in healthy participants during a verbal fluency task, and
showed decreased brain activity in the left but increased activity
in the right homolog. These findings were interpreted as sup-
portive evidence for transcallosal inhibition from the left to right
hemispheres; however, the changes in the effective connectivity
between the left and right inferior frontal gyri after TMS were
not examined. Alternatively, the up-regulation of homolog lan-
guage areas after brain stimulation could be considered as a form
of adaptive plasticity based on an interhemispheric compensa-
tory mechanism (31, 32, 35, 83). For example, a recent study of
semantic processing, combining theta-burst stimulation (cTBS)
and dynamic causal modeling (DCM) (32) found increased right
ventral anterior temporal lobe (vATL) in response to cTBS to
the left vATL. The DCM results revealed an increase in the
facilitatory drive from the right to the left vATL. There was no
evidence of negative inter-ATL connectivity with or without
stimulation. Similar results have been reported in another
brain stimulation study targeting Broca’s area during speech
processing (35).
Lastly, the model investigated multiple measures within a

single framework and their sometimes complex relationships.
The simulation results suggest that, in task-based fMRI studies,
BOLD signals and RSA measures may provide different infor-
mation: Although increase unit activations (compare to BOLD
increases) are a necessary precursor to behavioral recovery, higher
unit activations do not necessarily imply that the units are con-
tributing to improved performance. In the model, the performance
improvement required both increasing unit activation and tuning
weight connections. Immediately after damage, the activation level
of the units in the model was generally low. Thus, the first step
toward relearning was to increase the activation level via a gen-
eralized weight connection increase. This was followed by retuning
weight connections in order to minimize the errors between the
target and actual patterns at the output layer. The implication is
that fMRI BOLD signals in patients during recovery have an
ambiguous interpretation; they could reflect the neural basis for
recovered performance (as occurs, for example, in the right
hemisphere pathway after severe left hemisphere lesions: BOLD-
type and then RSA-type measures increase; Fig. 3) or, alternatively,
generalized but untuned activation (e.g., after a moderate le-
sion: Right hemisphere activation increases but performance
recovers only after the left hemisphere RSA has bounced back;
Fig. 3). In contrast, RSA might provide a more direct measure
to link recovered performance with neuronal pattern informa-
tion in different phases of aphasia recovery. This result is
consistent with a growing interest in using different types of
neuroimaging analyses to investigate the right hemisphere ac-
tivation patterns in poststroke aphasia and how it is related to
recovered performance (70, 71). Given that, to date, there have
not been any RSA-based studies of spoken language produc-
tion in aphasic patients, the current simulations serve as model
predictions for future neuroimaging studies. By extension, the
same techniques might also be helpful in clarifying the (dis)
advantages of using brain stimulation techniques (TMS or
transcranial direct current stimulation [tDCS]) to alter brain
activation for effective treatments.
To finish, we note, explicitly, that there were at least three

deliberate simplifications adopted in the model which can be
addressed in future work. First, the model focused on speech
production along the dorsal pathway. Obviously, there are mul-
tiple pathways in the language network (16, 40, 84–87). For ex-
ample, we have not considered the ventral pathway that includes
a semantic system for comprehension. A previous neurocomputa-
tional model (46) demonstrated that a dual-pathway neural network
model could simulate different types of aphasia (including receptive
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and expressive language) based on damage to a corresponding le-
sion site. Secondly, the psycholinguistic and cognitive science liter-
atures contain many sophisticated models of individual language
tasks (typically in relation to healthy performance) that embrace
large word corpora and linguistic detail. We deliberately adopted a
much more psycholinguistically simple model so that we could more
easily explore the potential relationship between behavioral per-
formance and brain structures/pathways, and thus allow us to distil
some principal mechanisms relating to the emergent division of
labor between the two hemispheres and how this can change in
recovery. Third, we acknowledge that the backpropagation algo-
rithm has commonly been viewed as biologically problematic even
though it is the most efficient and effective for deep neural networks
(88). However, this view may be changing. A very recent review (89)
proposed that there could be a more direct neural analog of
backpropagation: In simple terms, top-down feedback/prediction
could be compared at the local level against the bottom-up sensory
input. Clearly, however, more empirical evidence connecting the
backpropagation algorithm and learning in the brain is needed.
Future models can merge and elaborate these approaches to pro-
vide further systematic investigations, thereby elucidating the neural
bases of healthy language and partial recovery in poststroke aphasia.

Methods
Model Architecture. The bilateral model was implemented as a simple re-
current network. The dual-pathway architecture of the model is shown in
Fig. 1A. Each processing pathway consisted of two hidden layers. For the first
hidden layer, there was a copy of the hidden layer, shown as dashed lines in
Fig. 1A, known as an Elman layer (90); this allows a copy of the hidden layer
from the previous time tick to influence the current unit activations, func-
tioning as a memory buffer in the model.

The input phonological layer was connected to the first left and right
hidden layers with Elman connections and then to the second left and right
hidden layers and then to the single, final output layer. All layers were fully
connected, and the connections were unidirectional unless stated otherwise.

Representation. Both 100 three-phoneme high-frequency and 100 three-
phoneme low-frequency monosyllabic words with consonant−vowel−consonant
structures were included in the training set. Each word was represented by three
phoneme slots, with each slot consisting of 25 phonetic features (91, 92) (for
details, see SI Appendix, Supplementary Methods). The nonword list comprised 25
items created by changing the first consonant, the vowel, or the final consonant
in a word.

Training and Testing. The model was trained on word repetition. For each
word, the model was run for six time ticks. In the first three time ticks, each
phoneme was presented in the input layer sequentially. There was no output
target until all of the phonemes were presented. From the fourth time tick to
the sixth time tick, the model was required to produce the target phonemes
sequentially. Which word was presented to the model was determined by
its logarithmic frequency (93). The model was trained using a standard

backpropagation algorithm. Weight connections were updated after each
word presentation on the basis of cross-entropy error.

All words were used for training, and the nonword list was used for testing
generalization. The model was trained for 300,000 word presentations, at
which point the model repeated words accurately (>98%) and generalized to
nonwords (>96%) (Fig. 2A). The model’s performance was assessed by
comparing the output phonological pattern with the sequential phoneme
target. The model was judged to be correct only when all phonemes were
correct. Twenty versions of the model with different random initial weights
were trained to simulate different participants and to prevent the results
emerging from idiosyncratic random initial weights. More detailed train-
ing environment and testing procedures are reported in SI Appendix,
Supplementary Methods.

Neuroimaging Correlates. In neuroimaging studies, a laterality index was
computed by subtracting the signal obtained in the right language areas
from the corresponding left language areas and then dividing the score by
the sum of the signals (42, 73). For the simulation, two measures were used:
One was functional correlation (47, 74) as a proxy of effective connectivity
signals, and the other was output unit activation (75), as a proxy of fMRI
activation. For functional correlation, we recorded the unique contribution
from the left pathway to the output phonological layer for all words (from
the fourth to the sixth time ticks). This was achieved by lesioning the links
between input and the RH1 so that there was no input signal from the right
pathway. Similarly, the right pathway contribution was obtained by lesion-
ing the links between input and the LH1. We then correlated the activation
patterns from each pathway with the patterns when both pathways were
utilized. For output unit activation, the same lesioning technique was used
to isolate the unique contributions from the left or right pathway to the
output layer activations. Both measures were used to compute the lateral-
ization index (a positive score indicates a left-lateralized pattern).

RSA. For each word, the model produced three phonemes sequentially. To
conduct RSA (95), we concatenated the three output activations into one
output pattern for each word. We then computed a target representational
dissimilarity matrix (RDM) based on the correlation distance of all word pairs.
Similarly, for model RDMs, we computed the matrices based on the corre-
lation distance of hidden unit activation patterns at LH1, RH1, LH2, and LH2 in
the model independently. The hidden unit activation pattern for each word
consisted of hidden unit activations of the constituent phonemes. The RSA
correlation scores between the target RDM and the model RDMs of hidden
unit activations were reported.

Data Availability. The datasets generated and analyzed in this study and the
computer scripts used to run the simulations and to analyze the results are
available on the MRC Cognition and Brain Sciences Unit Data Repository
(https://www.mrc-cbu.cam.ac.uk/bibliography/opendata/).
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